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Abstract. We calculate the rectification coefficientarect and the second-harmonic generation
coefficienta2� for a quantum dot biased with an ac field. The coefficients are calculated as
functions of the gate voltage (i.e. the positions of the resonant levels) and the frequency of the
applied field. The rectification coefficient has a peaked dependence on the gate voltage with one
central (negative) and two side (positive) peaks around the voltage at which the corresponding
energy level for interacting electrons is equal to the collector electrode chemical potential. The
peak heights are related to the average number of electrons in the dot—a feature which is a direct
consequence of the electron interactions. The second-harmonic generation coefficient has similar
behaviour for low frequencies (arect = a2� at zero frequency). The frequency dependence of
the rectification coefficient has features resulting from the photon-assisted tunnelling through the
dot. The resonant-like enhancement of the rectification coefficient cannot be attributed to the
photon-assisted transitions between different resonant levels in the dot.

1. Introduction

Recently, the transport through resonant tunnelling systems in time-dependent fields has
been attracting much interest. Quantum dots are among the simplest systems for which to
study the time-dependent dynamics of nonequilibrium states, with possible applications in
high-speed electronics. The extremely fast response of double-barrier resonant tunnelling
structures (DBRTS) to an applied field has been demonstrated in picosecond switches [1]
and high-frequency negative-resistance oscillations [2, 3]. Comparison of the high-frequency
current response and the staticI–V characteristic showed that the charge-transport response
time is less than 10−13 s [4].

Various approaches have been adopted to study the transport through a quantum dot in
time-dependent fields—linear response calculations [5–7], non-Markovian master equations
[8], and nonlinear responses [9, 10]. In a Wigner function approach Frensley [9] calculated
the nonlinear response coefficients (the rectification coefficient and the second-harmonic
generation coefficient) and obtained a resonant enhancement of the rectification coefficient
arect in the frequency range from 1 to 8 THz. In a transmission coefficient approach
Wingreen [10] concluded thatarect is determined by the dcI–V characteristic. He found
that arect is a decreasing function of the frequency of the external field. We must point
out that this result is in disagreement with both the results of Frensley [9] and the findings
of the present work. Recently, Chittaet al [11] reported measurements of the far-infrared
response of a quantum dot at frequencies up to 3.3 THz. On the basis of a coherent picture
of the resonant tunnelling they concluded that the classical rectification cannot explain the
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measured quantum well response. All of these theoretical investigations studied the response
of a quantum dot without considering the electron–electron interactions.

In the present work we calculate the nonlinear response coefficients of a double-barrier
resonant tunnelling system explicitly taking into account the effect of the Coulomb charging
energy—the energy of the Coulomb repulsion between two electrons with opposite spins—
on the resonant level of the quantum dot. Since we study quantum wells out of equilibrium
(with an applied dc voltage) we employ the Keldysh Green’s function technique [12, 13].
The electron distribution in the dot is calculated from the Keldysh distribution function in the
presence of just the dc voltage. The expressions for the nonlinear response coefficients are
derived in terms of the quantum dot electron Green’s functions. We discuss their behaviour,
comparing the cases of interacting and noninteracting electrons.

The paper is organized in the following way. In section 2 we formulate the model
Hamiltonian of the quantum dot and introduce the nonequilibrium electron Green’s functions
in the Keldysh approach. In section 3 we derive the explicit expressions for the nonlinear
response coefficients in terms of the electron Green’s functions. In section 4 we discuss
the behaviour of the nonlinear response coefficients in the case of two degenerate resonant
levels in the dot. In the last section we comment on the applicability of our approach to
experiments.

2. The quantum dot Hamiltonian and electron Green’s functions

The starting point of our discussion is the Hamiltonian of the dot, coupled to two leads,
which are considered as ideal reservoirs. The Anderson Hamiltonian is given by

H =
∑

k,i=L,R

εika
†
ikaik +

∑
m

εmc†
mcm + Ec

∑
m,m′;m6=m′

nmnm′ +
∑

k,m,i=L,R

(Timkc
†
maik + HC).

(1)

It is expressed in terms of the annihilation operatorscm, aik, i = L, R, for electrons in the
well and quasiparticles in the left-hand (i = L) and the right-hand (i = R) lead, respectively.
The quasiparticle energiesεik, i = L, R, are measured from the corresponding Fermi levels
µL andµR in the emitter(i = L) and collector(i = R), and the dc bias isµL−µR = eV . In
the following we setµR = 0. The indexm runs over the dot energy levels as determined by
the quantum confinement, andEc is the Coulomb repulsion energy for repulsion between
electrons on different energy levelsεm and εm′ (m 6= m′). In the summation overm in
equation (1) we include the possibility of degenerate energy levels. The particle number
operator isnm = c

†
mcm. In equation (1)Timk, i = L, R, are the tunnelling matrix elements.

In writing this form of the Hamiltonian we make the following assumption: if some
lowest-lying states in the dot are always occupied, they are excluded from the summation
over m in equation (1). The electrons on these levels will modify (through the Coulomb
interaction energy) the energies of the electrons on dot levels retained in equation (1). If,
for example, there areN electrons in the lowest states, then

εm = ε(0)
m + NEc − e

CGVG + CLV

C6

(2)

whereε(0)
m is the bare resonant level energy, determined by the quantum confinement, and

the last term describes the dependence of the resonant level energy on the applied gate and
transport voltages (see figure 1 where the effective circuit of the dot is shown). The total
capacitance of the dot isC6 = CL + CR + CG with CL(R) the capacitances of the left-hand
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Figure 1. The effective circuit of the quantum dot.

(right-hand) electrode andCG the gate electrode capacitance. The case of noninteracting
electrons studied later in the text is obtained by puttingEc = 0.

We consider external time-dependent perturbation with a Hamiltonian given by

Hext = −e
CG

C6

u(t)
∑
m

c†
m(t)cm(t) (3)

where the external ac bias applied to the quantum well through the gate electrode is taken
in the form

u(t) = u0 exp(i�t) + CC. (4)

Note that throughout the remainder of this paper (unless explicitly written) we have omitted
Planck’s constant ¯h.

Now let us introduce the Keldysh Green’s functions of the quantum well electrons.
There are three types of Green’s function (GF) in the Keldysh formulation: the retarded
(advanced) and the distribution functions [13]. The retarded GF is defined as

Gmm′r (t) = −iθ(t)〈{cm(t), c
†
m′(0)}〉 (5)

and the distribution function is

Gmm′<(t1, t2) = i〈c†
m′(t2)cm(t1)〉. (6)

We recall that in the Keldysh technique the distribution GF depends on two times—the
‘relative’ time t = t1 − t2 and the ‘centre-of-mass’ timeT = (t1 + t2)/2—while the retarded
GF depends only on a single time variable.

We do not give the details of the derivation of the Green’s function, part of which
can be found in [14]. We present only the final form of the retarded (advanced) and the
distribution GF in some simple cases since the explicit expressions are too cumbersome to
quote here.

3. Nonlinear response coefficients

In this section we derive the general formulas for the rectification coefficient and the second-
harmonic generation coefficient. The tunnelling current through the left/right-hand barrier
of the dot is given by

IL/R(t) = −ie

〈∑
k,m

(
TL/Rmkc

†
m(t)aL/Rk(t) − HC

)
S̃(t)

〉
(7)
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where

S̃(t) = T̃p exp

[
−i

∫
p

dt ′ Hext (t
′)
]

.

T̃p is the closed-path time-ordering operator [12] and the brackets in equation (7) denote
averaging with respect to the Hamiltonian (1). The total current through the left/right-hand
barrier of the dot is (see figure 1)

I tot
L/R = ĨL/R + CR/L + CG

C6

IL/R − CL/R

C6

IR/L (8)

whereĨL/R are the displacement currents through the parasitic capacitances. They are linear
in the amplitude of the applied ac bias and do not contribute to the nonlinear response of
the dot.

The nonlinear response coefficients are calculated by expanding the current equation (7)
in powers of the external ac voltage biasu(t). The term quadratic in the amplitudeu0 is
given by

I II
i (t) = ie3

2
α2

〈
T̃p

∫
dt ′

∫
dt ′′ u(t ′)u(t ′′)

∑
k,m

(
Timkc

†
m(t)aik(t) − HC

)
+

×
(∑

m′
c
†
m′(t

′)cm′(t ′)
)

β

(∑
m′′

c
†
m′′(t

′′)cm′′(t ′′)
)

γ

〉
ηβηγ i = L, R (9)

where the subscripts+, β, γ = ± refer to the positive (+) or negative (−) branch of
the closed time path andη+ = +1, η− = −1 [12]. The time variable of a physical
quantity (in our case the current) is always on the positive branch [12]. The coefficient
α = CG/C6 . Next we perform a Fourier transformation and the result for the Fourier
transformI II

i (ω), i = L, R, is obtained in the form

I II
i (ω) = −2πe3α2

∞∫
−∞

dω′ Tr

{(
6̂ir (ω + ω′) − 6̂ia(ω

′)
) [

Ĝr(ω + ω′)Ĝr (ω
′ + �)Ĝ<(ω′)

+ Ĝr(ω + ω′)Ĝ<(ω′ + �)Ĝa(ω
′) + Ĝ<(ω + ω′)Ĝa(ω

′ + �)Ĝa(ω
′)
]

+ 6̂i<(ω + ω′)Ĝa(ω + ω′)Ĝa(ω
′ + �)Ĝa(ω

′)

− 6̂i<(ω′)Ĝr (ω + ω′)Ĝr (ω
′ + �)Ĝr(ω

′)
}

× u2
0

(
δ(ω) + δ(ω − 2�)

)
+

(
� → −�

)
. (10)

Here ˆ above the symbol denotes a matrix in the level indices. The components of the
matrix self-energies are defined in the following way:

6mm′iν =
∑

k

TimkT
∗
im′kAiν(k, ω) (11)

whereν = r, a, < with Aiν(k, ω) being the retarded, advanced, and the distribution GF in
the leads, respectively. The notation(� → −�) means that one adds the same terms as
those explicitly written but with� replaced by−�.

The terms withω = 0 in equation (10) contribute to the dc current through the dot.
The coefficient of proportionality between the current andu2

0 is defined as a rectification
coefficientarect . The coefficienta2� with ω = 2� in equation (10) describes the amount
of second-harmonic generation.
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4. The nonlinear response of a dot with two degenerate levels

Let us consider the case of two degenerate levelsε1 = ε2 = ε ignoring all higher levels.
The dot electrons GF are now diagonal andG11 = G22 = G. They are calculated using the
method of irreducible Green’s functions [14, 15]. The retarded Green’s function for the dot
electrons is obtained in the form

Gr = ω − ε̃−m − 60 − 61

(ω − εm − 60)(ω − ε − 60 − 61) − Ec(ω − εm − 60 − 62)
(12)

where the analytical continuationω −→ ω + i0+ is used. The self-energy parts in
equation (12) are given by

60(ω) =
∑

i=L,R

60i (ω) 60i (ω) =
∑

k

|Tik|2
ω − εik

(13)

61(ω) =
∑

k,i=L,R

|Tik|2
[

1

ω − ε−m − εm + εik

+ 1

ω + ε−m − εm − εik

]
(14)

62(ω) =
∑

k,i=L,R

|Tik|2f (εik)

[
1

ω + ε−m − εm − εik

+ 1

ω − ε−m − εm + εik

]
(15)

wheref (εik), i = L, R, is the Fermi–Dirac distribution function for the electrons in the leads.
We have used the following notation:εm = ε + Ec〈n−m〉 and ε̃m = ε + Ec(1 − 〈n−m〉),
where 〈nm〉 is the average number of electrons on the levelm = 1, 2, in the dot. The
notation−m is understood as−1 = 2, −2 = 1. We have omitted the subscriptm in the
tunnelling matrix elements since in the present case they do not depend on the level indices.
The self-energies in equation (10) are now given by611i = 622i = 60i , 612i = 621i = 0.

The Green’s function in equation (12) describes two levels for the quantum dot
electrons—a lower (resonant) level with energy∼ε and the upper level with energy∼ε+Ec.
The relative weight of the lower/upper level in the density of states for the dot electrons
is proportional to 1− 〈n−m〉/〈n−m〉, respectively. We should point out that the Green’s
function presented here is valid for temperatures higher than the characteristic temperature
for the problem—the Kondo temperatureTK . Lacroix [16] has shown that for temperatures
T < TK this derivation procedure omits terms which are divergent at the Fermi level. These
terms give rise to the Kondo effect. The exact noninteracting electron GF is obtained from
equation (12) withEc = 0.

The distribution Green’s function is calculated under the assumption that the transient
processes after switching on the dc bias have decayed, and the result is

G<(ω) = 60<(k, ω)

(60r (ω) − 60a(ω))

(
Gr(ω) − Ga(ω)

)
(16)

where

60<(ω) =
∑

k,i=L,R

|Tik|2Ai<(k, ω)

and Ai<(k, ω), i = L, R, is the distribution Green’s function in the left-hand (right-hand)
lead, respectively. The average number of electronsn = 〈nm〉 = 〈n−m〉 is obtained by
self-consistently solving the equation

n =
∫

dω

2π
Im G<(ω). (17)
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In the following we discuss the nonlinear response of a quantum dot in the approximation
of energy-independent tunnelling matrix elements. This means that we take the elastic level
widths

γL(R)(ω) = π
∑

k

|TL(R)k|2 δ(ω − εL(R)k) (18)

to be constantsγL(R), independent ofω. The calculations are performed by taking a broad
flat density of states for the lead electrons [16]. We take the band width in the leads to
be much larger thanEc, eV, eVG, and�. We must point out, however, that the staticI–
V characteristic which is obtained in this approach (the so-called Coulomb staircase) is a
monotonically increasing function ofV and does not have regions of negative differential
resistance. The negative differential resistance appears when a dot electron energy level
approaches the band edge in the leads and this is not possible in our approximation.

Now we present our numerical results for the rectification coefficient and the second-
harmonic generation coefficient of a quantum dot. The numerical procedure is as follows.
First, one solves equation (17) to obtain the average number of electrons in the dot and then
computesarect anda2� from equation (10). We have chosen the following values for the
model parameters:Ec = 100 γ , CL = CR = 5 × 10−5e2/γ , andCG = 10−5e2/γ .

Figure 2. The rectification coefficientarect (in units of e3/h̄γ ) versus the resonant level energy
ε (relative to the right-hand chemical potentialµR = 0) for (a) interacting (solid line) and (b)
noninteracting (dashed line) electrons. The frequency is� = 10γ and the dc voltageeV = 20γ .

In figure 2 we have plottedarect as a function of the position of the resonant level
(relative to the right-hand chemical potential) of a dot, symmetrically coupled to the leads
(γL = γR). The rectification coefficient for noninteracting electrons (figure 2, curve (b)) has
a characteristic three-peak structure—one central (negative) and two side (positive) peaks.
It is nonzero when the resonant level energy is in the vicinity of the right-hand chemical
potential (µR is set to 0). In the case of interacting electrons (figure 2, curve (a)) there
are two sets of peaks at energies close to 0 and−Ec corresponding to the cases when the
resonant or the upper level is nearµR. The side peaks are not symmetric with respect
to the negative one. The upper side peak (the peak at higher gate voltage) for the upper
level and the lower side peak for the resonant level are suppressed. This is connected
to the dependence of the relative weights of both levels in the density of states on the
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average number of electrons in the dot. Consider the peaks corresponding to the upper
level. Recall that the relative weight for the upper level is proportional ton. Each GF in
the expression forarect (equation (10)) contributes a factorn; thus,arect is proportional to
n3 in the vicinity of ε = −Ec. The average number of dot electrons 2n decreases as the
resonant level energy approaches the collector chemical potential since there are more and
more states in the collector available for the tunnelling electron. The ratio of the height of
the lower side peak (atε = ε−; see figure 2) to the height of the upper side peak (atε = ε+)
is ∼9.2 while the ration3(ε−)/n3(ε+) ≈ 7.6. Hence, the dependence of the relative weight
of the upper level on the resonant level energy explains reasonably well the heights of the
side peaks. Of course, there are more factors influencing the heights of the peaks, e.g. the
Fermi–Dirac distribution functions in equation (10) which lead to an additional suppression
of the height of the upper side peak. We stress that this behaviour clearly results from the
Coulomb blockade since in the noninteracting case the side peaks have equal heights. The
ratio of the heights of the side peaks for the resonant level can be similarly explained. In
this case the relative weight of the lower level is proportional to 1− n and increases as the
resonant level energy approachesµR.

Let us now discuss qualitatively the behaviour ofarect when more than one resonant
level is taken into account. Consider again the peaks ofarect corresponding to the upper
level. They appear when one electron from a quantum dot withN electrons (two in our
case) can tunnel out of the dot leaving it in a state withN − 1 6= 0 electrons (one electron
in our case). Thus, for a dot with many levels the dependence ofarect on the gate voltage
will have the same qualitative behaviour as that for the upper level in the case that we have
studied. The rectification coefficient will show the same structure of one central (negative)
and two side (positive) peaks around the gate voltage at which one electron can tunnel
out of the dot. The spacing between successive three-peak structures will be equal to the
Coulomb charging energy, that is, the energy needed to add an electron to a quantum dot
with N electrons. The heights of the side peaks will depend in some complicated way on
the average number of electrons at every energy level in the dot. We can expect that in this
case the suppression of the upper side peak height will be smaller since the relative change
of the average number of dot electrons is smaller (one electron leaves a dot with 10–20
electrons).

The behaviour ofarect as a function of the position of the resonant level (i.e. the gate
voltage applied to the dot) that we have obtained is qualitatively similar to the recent
experimental result of Kouwenhovenet al [17] on single-electron tunnelling through a
quantum dot in the presence of microwave radiation. Kouwenhovenet al [17] analysed their
results on the basis of the Tien–Gordon theory [18] of photon-assisted tunnelling. From
this theory one would expect to find that the two side (positive) peaks are at a distance
� from the central peak. This distance in our results is bigger than�. We attribute this
behaviour to the effect of the temperature. The thermal fluctuations not only broaden the
peaks but they also shift the positions of the peaks to higher energies or frequencies (see
the discussion of the frequency dependence ofarect below).

Let us now discuss the frequency behaviour of the rectification coefficient. The results
are presented on figures 3 and 4. We consider two cases with different behaviours ofarect .
They are distinguished by the positions of the resonant level relative to that of the collector
chemical potential. In figure 3 we showarect for noninteracting dot electrons calculated
for the resonant level below the collector chemical potential, forε = −200γ , for applied
dc voltageeV = 50γ and for temperatureT = 0 (curve (a)) andT = 5γ (curve (b)).
At zero temperaturearect is nonzero over a frequency interval with a width equal to the
applied dc voltage. The maximum ofarect appears at a frequency equal to the resonant
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Figure 3. The rectification coefficientarect (in units of e3/h̄γ ) versus the frequency of the
applied ac field for noninteracting (curves (a) and (b)) and interacting dot electrons (curve (c)).
The resonant level energy isε = −200γ and the dc voltageeV = 50γ . The temperatures are
T = 0 (curve (a)) andT = 5γ (curves (b) and (c)). Note that the data for curves (a) and (b)
have been multiplied by a factor of 4.

Figure 4. The rectification coefficientarect (in units of e3/h̄γ ) versus the frequency of the
applied ac field for noninteracting (curves (a) and (b)) and interacting dot electrons (curve (c)).
The resonant level energy isε = 35γ and the dc voltageeV = 50γ . The temperatures are
T = 0 (curve (a)) andT = 5γ (curves (b) and (c)). Note that the data for curve (c) have been
multiplied by a factor of 4.

level energy (equation (2)). At nonzero temperature the peak ofarect broadens and its
maximum shifts to higher frequencies as compared to theT = 0 case. This feature arises
as a result of the photon-assisted tunnelling. Since the resonant level is well below the
collector chemical potential, there are no free-electron states in the collector available for
the tunnelling electron. The electron must absorb a photon to tunnel through the right-hand
barrier. When the Coulomb interaction is taken into account the dependence ofarect on �
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(figure 3, curve (c)) is similar to that in the case of noninteracting dot electrons that we have
just discussed, with the exception that the maximum appears near the frequency� ∼ ε+Ec.
It is easy to understand this behaviour: since the resonant level is well below the collector
chemical potential the average number of electrons in the dot is bigger than one—there is
always one electron on the resonant level. In this case the transport through the dot occurs
only through the upper level. The width of the frequency interval with nonzero values
of arect is equal toeV because electrons in the left-hand lead (the emitter) with energies
betweenµR andµL can tunnel through the dot.

Figure 5. The second-harmonic generation coefficienta2� (in units ofe3/h̄γ ) versus the resonant
level energyε for interacting dot electrons. The dc voltage iseV = 20γ and the temperature
is T = 5γ .

In figure 4 we present the frequency dependence ofarect for a quantum dot in the case
where the resonant level energy is above the collector chemical potential. The calculation
is performed for the following set of parameters:ε = 35γ and eV = 50γ . We consider
two cases for noninteracting electrons in which the temperature isT = 0 (curve (a)) and
T = 5γ (curve (b)). The results for the interacting case are presented in figure 4 (curve
(c)) for T = 5γ . At zero temperature (curve (a))arect displays a resonant behaviour with
two sharp peaks at frequencies� = |ε − µL| and � = |ε − µR| (recall that we have set
µL = eV andµR = 0). At higher temperatures the second peak is almost smeared out by
the thermal fluctuations (curve (b)). The rectification coefficient for interacting electrons
has four features (peaks) near the frequencies (figure 4, curve (c); the peaks are marked with
arrows for increasing values of�) � = |ε − µL|, � = |ε − µR|, � = |ε + Ec − µL|, and
� = |ε+Ec −µR|. The first two peaks come from the lower (resonant) level (they coincide
with the corresponding features in the noninteracting case) and the latter two are from the
upper level. In the case that we are considering, the upper level (at energy∼ε+Ec = 135γ )
is above the emitter chemical potentialµL = eV = 50γ . The dc tunnelling current from
the emitter to the collector flows only through the resonant level—the upper level is not
occupied (there are no available electrons in the emitter at energyε + Ec that can tunnel
to the dot). In a time-dependent field the peaks in the frequency dependence ofarect are a
demonstration of the photon-assisted tunnelling—the electron must absorb a photon to jump
to the upper level in order to tunnel through the left-hand barrier.
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We now compare our results for the frequency dependence ofarect to the results reported
by Frensley [9]. Frensley computed the Wigner function of the dot in the presence of a
time-dependent potential taking into account the effect of all resonant levels in the dot. He
obtained resonant enhancement of the rectification coefficient in the frequency range 1–
8 THz. However, the distance between the lowest resonant levels was much larger than the
frequency of the applied ac field which rules out photon-assisted transitions between these
levels. The results of Frensley [9] and our work suggest that the resonant-like enhancement
of the rectification coefficient is not due to the transitions between different resonant levels
in the dot. It results from the photon-assisted tunnelling through the dot.

Now we briefly discuss the behaviour of the second-harmonic generation coefficient.
For relatively small driving frequencies it has qualitatively the same gate voltage dependence
asarect . Obviously, the two coefficients coincide for zero driving frequency:

arect (� = 0) = a2�(� = 0) = d2I

dV 2
(19)

where I (V ) is the dc current–voltage characteristic of the dot. For higher frequencies
the peaks in the gate voltage dependence ofa2� are significantly displaced compared to
the peaks ofarect due to the different frequency arguments of the Green’s functions in
equation (10). In figure 5 we present the gate voltage dependence ofa2� calculated for
the following parameter values: eV = 20γ , T = 5γ , and � = 25γ . Note the peak
displacement equal to the driving frequency.

5. Discussion

In this section we address the applicability of the approach that we have adopted to
experiments. We have considered the lead electrons as noninteracting particles. In real
systems, electrons near the quantum dot barriers contribute to the self-consistent potential.
Thus, one should (1) self-consistently determine the tunnelling matrix elements and single-
particle energies, and (2) calculate the transport characteristics of a system with these self-
consistent parameters. In this work we consider only step (2) assuming the results of (1) as
input parameters. The on-site repulsion energy can be estimated fromEc ∼ e2/εL, where
L is the size of the confined region, andε is the dielectric constant for the GaAs. Thus
for a quantum dot with an average size of 100Å, one getsEc ∼ 1–10 meV. It is less
evident how to estimate the elastic broadening constantγ , but we can use the estimation
given in [19] for γ ∼ 10–20µeV for a structure of about the same size. We must point
out that our calculation takes into account only the level width which is due to tunnelling
(the self-energies in equations (13)–(15)). There are other mechanisms which broaden the
level and they lead to some new renormalized level width which may be much larger than
γ . The approach in this work in the interacting case is limited to the following range of the
main parameters in the model:Ec � T � γ . In the case of noninteracting electrons we
used a phenomenological model where the total level width is expressed as a sum of elastic
and inelastic widths,γ = γel + γinel . The nonlinear response coefficients showed the same
characteristic sets of peaks which were suppressed in height and additionally broadened [20].

We modelled the electron–electron Coulomb interaction by an impurity Anderson model
i.e. we considered only the on-site part of the interactions. By neglecting the long-range
interactions, we do not describe correlations between charge fluctuations at different sites
of the system. Recently, B̈uttiker and co-workers [21] emphasized the importance of the
long-range interactions in mesoscopic systems. We must point out in this context that the
current is conserved in our model:I tot

L + I tot
R + IG = 0, whereI tot

L/R is the current through
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the left/right-hand barrier (equation (8)) andIG is the capacitive gate electrode current. This
current conservation results from the long-range nature of the Coulomb interactions. On
the other hand, the impurity Anderson model has all of the features necessary to describe
the Coulomb blockade in a quantum dot. Thus, we believe that our approach correctly
describes the nonlinear response of the dot in most of the experimental situations for driving
frequencies that are not too high. The frequency of the external ac bias must be smaller
than the plasma frequency of the leads. The plasma frequency is of the order of tens of
THz; this value is well above the present experimentally accessible frequencies,∼5 THz.

In conclusion, we have calculated the nonlinear response coefficients (the rectification
coefficient and the second-harmonic generation coefficient) of a quantum dot with interacting
electrons. As functions of the position of the resonant level they have two characteristic
sets of peaks reflecting the energy spectrum of the electrons. The heights of the peaks are
consistent with the dependence of the relative weight of the two levels in the density of states
on the average number of electrons in the dot—a feature which is a direct consequence of the
electron interactions. The frequency dependence of the rectification coefficient shows clear
evidence of a photon-assisted tunnelling—the electron absorbs a photon to tunnel through
a barrier. The resonant-like enhancement of the rectification coefficient is not due to the
photon-induced transitions between different resonant levels in the dot since it appears when
there is only one resonant level in the dot.
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